

Introduction

Amaryllidaceae is a large family with more than 1600 species, belonging to 75 genera. The largest genus - Allium comprises about 1000 species. They are widespread and are adapted to a wide range of habitats from shady forests to meadows, steppes and deserts. Species can even live on mountains at an altitude of 5000 meters. Genes present in chloroplast genomes (plastomes) play fundamental role for the photosynthesis. Plastome traits could thus be associated with geophysical abiotic characteristics of habitats. Most chloroplast genes are highly conserved and are used as phylogenetic markers for many families of vascular plants. Nevertheless some studies revealed signatures of positive selection in chloroplast genes of many plant families including Amaryllidaceae. In this work we provide analysis of Allioideae subfamily plastid genomes selection events.

AIMS

1. To detect selection events among *Allium* genus plastomes. 2. To infere if selection is acting on plastome genes in different habitat altitudes.

Microevolution Events in Allium (Amaryllidaceae) Plastomes

Pavel Nikitin (nikitinp@fbb.msu.ru)¹ ¹ Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia

			·	
	Proportion of gaps	Evolutionary line	Species	
	in alignment in the window of 100 b.p.	I	Allium paradoxum Allium macranthum	
			Allium neriniflorum	
			Allium strictum	
			Allium przewalskianum	
			Allium forrestii	
			Allium oschanii	
	\square GC-content in the		Allium cyathophorum	
 		• Genes <i>infA</i> , <i>ccsA</i> , <i>rps2</i> and <i>rps1</i>		
	Relative tree length in the window of 100 b.p. Relative mutation rate barplot $\frac{dN}{dS}$ -MEME rate barplot	 Genes <i>infA</i>, <i>ccsA</i>, <i>rps2</i> and <i>rps1</i> different species, while the pse The "normal" or "pseudo" state evolutionary line of genus the Independent methods reveale photosynthesis-involved genes function (<i>ycf1</i>, <i>ycf2</i>) being unde Most species in which genes a mountains (more than 2000 m Taking into account known me electron transport, we can hyp subunits of NADH-plastoquing factors in high habitat altitudes 		

Acknowledgements

I express gratitude to my tutors A. S. Speranskaya, A. A. Krinitsina, I. V. Artyushin, V. A. Scobeyeva, D. V. Pozdyshev and my mate E. N. Pitikov for guidance and support.

Table 1. Sites under positive or diversifying selection in protein coding genes.

Protein	Gene	Number of sites in alignment	Number of MEME sites under + selection	Number of FUBAR sites under + and – selection	Positions and number of MEME sites, confirmed by FUBAR
acetyl-CoA carboxylase carboxyltransferase beta subunit	accD	480	6	+5 -23	96, 156, 176, 477 total 4
Protein TIC 214	ycf1	1761	51	+9 -44	352, 705, 810, 851 total 4
Hypothetical chloroplast RF21	ycf2	2294	15	+35 -14	474, 475, 595, 691, 1786 total 5
NADH-plastoquinone oxidoreductase subunit 4	ndhD	507	5	+3 -88	404, 454 total 2
NADH-plastoquinone oxidoreductase subunit 5	ndhF	734	15	+6 -146	299, 510, 514,676 total 4
NADH-plastoquinone oxidoreductase subunit K	ndhK	249	3	+2 -20	235, 240 total 2
maturase K	matK	521	13	+7 -40	92, 324, 345 total 3
ribulose-1,5-bisphosphate carboxylase oxygenase large subunit	rbcL	480	9	+10 -70	91, 97, 225, 265 total 4
RNA polymerase beta subunit	rроВ	1071	9	+5 -158	7, 160, 1061 total 3

Table 2. Species in which aBSREL showed positive selection

Habitat altitude (meters)	Genes		
No data (lives in shady forests)	matK		
2700 – 4200	ndhF, rpl16, rpoC2		
4500 – 5000	ndhK		
500 - 2000	ndhF, rpoB		
No data (lives on open rocks)	ndhK		
2000 - 4800	ndhJ		
2700 – 4200	ndhF		
3000	ndhJ, rpoB		
2700 – 4600	ndhD, ndhJ		

nclusion

6 have lost their functionality multiple times in eudogenization of other genes was occasional. e of *rps2* and *ccsA* genes correlates well with the species belong to.

ed some housekeeping genes (*accD*, *matK*, *rpoB*), s (*ndhD*, *ndhF*, *ndhK*, *rbcL*) and genes of unknown er positive selection.

are being under positive selection live high in the neters above sea).

echanisms of coping with excessive light by cyclic pothesize that adaptive evolution in genes, coding one oxidoreductase could be driven by abiotic es like temperature, light intensity or UV radiation.